PS

RAPL

@deprecated

代わりに RAPL in string diagrams - PS を参照。

記法.1

 \lim _ j D _ j の limiting cone を

  •  \lim  D _ j : \operatorname{lim} _ j D _ j \to D _ j

それへの mediator を

  •  D _ j \langle \mu _ j \rangle

と書いてしまうことにする。

記法.2

  •  Px \operatorname{op} _ x Qx \iff (\forall x)(Px \operatorname{op} Qx)

命題

Right Adjoints Preserve Limits:

  • adjunction  F \dashv U
    •  F : \mathcal{C} \to \mathcal{D}
    •  U : \mathcal{D} \to \mathcal{C}
    •  \mathcal{D}(FC, D) \overset{\dashv}{\underset{\vdash}{\cong}} \mathcal{C}(C, UD)

について

  •  \exists \operatorname{lim} _ j D _ j
    •  D : \mathcal{J} \to \mathcal{D}

ならば

  •  U(\operatorname{lim} _ j D _ j) \cong \exists \operatorname{lim} _ j UD _ j

証明.1


\begin{aligned}

      & U(\operatorname{lim} D _ j : \operatorname{lim} _ j D _ j \to D _ j) \circ (f: C \to U(\operatorname{lim} _ j D _ j) ) = _ j \mu _ j : C \to U D _ j \\

\iff & \lbrace \text{Yoneda embedding is fully faithful} \rbrace \\
      & \mathcal{C}(X, U(\operatorname{lim} D _ j) ) \circ \mathcal{C}(X,f) = _ {j,X} \mathcal{C}(X, \mu _ j) \\

\iff & \lbrace \text{bijectivity of } {\dashv} \rbrace \\
      & {\vdash} \circ \mathcal{C}(X, U(\operatorname{lim} D _ j) ) \circ \mathcal{C}(X,f) = _ {j,X} {\vdash} \circ \mathcal{C}(X, \mu _ j) \\

\iff & \lbrace \text{naturality of } {\vdash} \rbrace \\
      & \mathcal{D}(FX, \operatorname{lim} D _ j) \circ {\vdash} \circ \mathcal{C}(X,f) = _ {j,X} {\vdash} \circ \mathcal{C}(X, \mu _ j) \\

\iff & \lbrace \text{hom functors preserve limits;universality} \rbrace \\
      & {\vdash} \circ \mathcal{C}(X,f) = _ X \mathcal{D}(FX, D _ j) \langle {\vdash} \circ \mathcal{C}(X, \mu _ j) \rangle \\

\iff & \lbrace \text{bijectivity of } {\dashv} \rbrace \\
      & \mathcal{C}(X,f) = _ X {\dashv} \circ \mathcal{D}(FX, D _ j) \langle {\vdash} \circ \mathcal{C}(X, \mu _ j) \rangle \\

\iff & \lbrace \text{Yoneda embedding is fully faithful} \rbrace \\
      & f = Y ^ {-1} ( ({\dashv}  \circ \mathcal{D}(FX,D _ j) \langle {\vdash} \circ \mathcal{C}(X, \mu _ j)  \rangle ) _ X ) \\


\end{aligned}

よって Universality - PS より。

証明.2

Category Theory (Oxford Logic Guides) では


\begin{aligned}

      & \mathcal{C}(X, U(\operatorname{lim} _ j D _ j) ) \\

\cong & \lbrace \text{adjunction} \rbrace \\
      & \mathcal{D}(FX, \operatorname{lim} _ j D _ j) \\

\cong & \lbrace \text{hom functors preserve limits} \rbrace \\
      & \operatorname{lim} _ j \mathcal{D}(FX, D _ j) \\

\cong & \lbrace \text{adjunction} \rbrace \\
      & \operatorname{lim} _ j \mathcal{C}(X, UD _ j) \\

\cong & \lbrace \text{hom functors preserve limits} \rbrace \\
      & \mathcal{C}(X, \operatorname{lim} _ j UD _ j) \\

\end{aligned}

よって Yoneda principle - PS より。

となっているがなぜこれが証明になるのか未だ謎である。

参考文献