PS

Conical limits in enriched categories

定義: 1-limits

  •  \operatorname{1-lim} G := \operatorname{1-corep} _ B \operatorname{1-nat} _ K (B, GK)
    •  \mathcal{B}(B, \operatorname{1-lim} G ) \cong \operatorname{1-nat} _ K (B, GK)
      • 1-functor:  G : \mathcal{K} \to \mathcal{B}

命題: 1-limits via weighted limits

  •  \operatorname{1-lim} G \cong \operatorname{lim} _ K ^ {\lbrace \ast \rbrace} GK
    •  G : \mathcal{K} \to \mathcal{B}

証明

Representability による limit - PS による。

  •  \operatorname{1-nat} _ K(B, GK) \cong \operatorname{1-nat} _ K( \lbrace \ast \rbrace, \mathcal{B}(B, GK) )

による。

命題

1-functor:

  •  T : \mathcal{L} \to \mathcal{B} _ 0
    • 1-category:  \mathcal{L}
    •  \mathcal{V}-category:  \mathcal{B}

について、Free enriched category - PS による 2-adjunction:

  •  \mathbf{CAT}(\mathcal{L}, (\mathcal{V}) _ 0) \cong \operatorname{\mathcal{V}-\mathbf{CAT}}(\mathcal{L} _ {\mathcal{V}}, (\mathcal{V}) )

を使うと

  •  \lbrack \mathcal{L} _ {\mathcal{V}}, (\mathcal{V}) \rbrack ( \overset{\sim}{\Delta I}, \lambda _ K \mathcal{B}(B, \overset{\sim}{T}K) ) \cong \operatorname{1-lim} _ K \mathcal{B}(B, TK)
    •  \mathcal{V}-natural in  B

ただし

  •  \Delta I : \mathcal{L} \to (\mathcal{V}) _ 0
  •  \lambda _ K \mathcal{B}(B, TK) := \mathcal{L} \overset{T}{\to} \mathcal{B} _ 0 \overset{\mathcal{B}(B, \unicode{0x2013})}{\to} (\mathcal{V}) _ 0

とした。

証明

まず、左辺は  B について  \mathcal{V}-functorial であったので  \mathcal{V}-natural-looking であれば右辺を  \mathcal{V}-functorial にするのに十分。


\begin{aligned}

      & \big\lbrack X, \lbrack \mathcal{L} _ {\mathcal{V}}, (\mathcal{V}) \rbrack( \overset{\sim}{\Delta I}, \lambda _ K \mathcal{B}(B, \overset{\sim}{T}K ) ) \big\rbrack \\
\cong & \lbrace \text{functor category} \rbrace \\
      & \big\lbrack X, \textstyle\int _ K \lbrack \overset{\sim}{\Delta I} K, \mathcal{B}(B, \overset{\sim}{T} K) \rbrack \big\rbrack \\
\cong & \lbrace \text{end} \rbrace \\
      & \operatorname{\mathcal{V}-nat} _ K \big(X, \lbrack \overset{\sim}{\Delta I}K, \mathcal{B}(B, \overset{\sim}T K ) \rbrack \big) \\
\cong & \lbrace \text{flip} \rbrace \\
      & \operatorname{\mathcal{V}-nat} _ K \big(  \overset{\sim}{\Delta I} K, \lbrack X, \mathcal{B}(B, \overset{\sim}T K ) \rbrack \big) = \operatorname{\mathcal{V}-\mathbf{CAT}}(\mathcal{L} _ {\mathcal{V}},(\mathcal{V}) )\big( \overset{\sim}{\Delta I}, \lambda _ K \lbrack X, \mathcal{B}(B, \overset{\sim}T K ) \rbrack ) \big) \\
\cong & \lbrace \text{isomorphic 1-functor of the 2-adunction} \rbrace \\
      & \mathbf{CAT}(\mathcal{L},(\mathcal{V}) _ 0) \big( \Delta I, \overset{\sim}{\lambda} _ K \lbrack X, \mathcal{B}(B, \overset{\sim}T K ) \rbrack \big) \\
\cong & \lbrace \text{naturality of the 2-adjunction} \rbrace \\
      & \mathbf{CAT}(\mathcal{L},(\mathcal{V}) _ 0) \big(\Delta I, \lambda _ K \lbrack X, \mathcal{B}(B, TK) \rbrack \big) = \operatorname{1-nat} _ K (I, \lbrack X, \mathcal{B}(B,TK) \rbrack ) \\
\cong & \lbrace \text{flip} \rbrace \\
      & \operatorname{1-nat} _ K ( X, \lbrack I, \mathcal{B}(B, TK) \rbrack ) \\
\cong & \lbrace \text{close} \rbrace \\
      & \operatorname{1-nat} _ K ( X, \mathcal{B}(B, TK) ) \\

\end{aligned}

定義: Conical limits in enriched categories

  •  \operatorname{lim} T := \operatorname{corep} _ B \operatorname{1-lim} _ K \mathcal{B}(B, TK)
    •  \mathcal{B}(B, \operatorname{lim} T) \cong \operatorname{1-lim} _ K \mathcal{B}(B,TK)
      •  T : \mathcal{L} \to \mathcal{B} _ 0

系: Conical limits via weighted limits

  •  \operatorname{lim} T \cong \operatorname{lim} ^ { \overset{\sim}{ \Delta I } } \overset{\sim}{ T }
    •  T : \mathcal{L} \to \mathcal{B} _ 0
    •  \Delta I : \mathcal{L} \to (\mathcal{V}) _ 0

参考文献