PS

Comma category

Comma category

Functor:

  •  S : \mathcal{A} \rightarrow \mathcal{C}
  •  T : \mathcal{B} \rightarrow \mathcal{C}

について、comma category:

  •  (S \downarrow T)

を次のように定義できる:

  •  (S \downarrow T)_0 = \lbrace (A, B, f) \mid A \in \mathcal{A}, B \in \mathcal{B}, f : S(A) \rightarrow T(B) \rbrace
  •  (S \downarrow T)_1 = \lbrace (A, B, f, A', B', g, a, b) \mid g \circ S(a) = T(b) \circ f, (A, B, f), (A', B', g)\in (S \downarrow T)_0 \rbrace
  •  \text{dom}(A, B, f, A', B', g, a, b) = (A, B, f)
  •  \text{cod}(A, B, f, A', B', g, a, b) = (A', B', g)
  •  (A', B', g, E, F, h, r, s) \circ (A, B, f, A', B', g, a, b) = (A, B, f, E, F, h, r \circ a, s \circ b)
  •  \text{id}_{(A, B, f)} = (A, B, f, A, B, f, \text{id} _ A, \text{id} _ B)

f:id:mbps:20131005035405p:plain

命題

  •  \forall  (a, b) : f \rightarrow g,
    •  (a, b): \text{iso} \Leftrightarrow (a: \text{iso} \wedge b: \text{iso})

Morphism category

  • identity functor:  1 _ {\mathcal{C} } : \mathcal{ C \rightarrow C }

を使って

  •  \mathcal{C} ^ {\rightarrow} = (1 _ {\mathcal{C}} \downarrow 1 _ {\mathcal{C}} )

と定義できる。

Over category, slice category

Category  \mathcal{C}  \mathcal{C} -object  A について、

  • constant functor:  \Delta(A) : 1 \rightarrow \mathcal{C}

を使った

  •  (1 _ {\mathcal{C} } \downarrow \Delta(A) )

category over  A といい、

  •  \mathcal{C} \downarrow _ A

と書く。

Cone category

任意のfunctor  F : \mathcal{J \rightarrow C} について、cone category

  • diagonal functor:  \Delta : \mathcal{C \rightarrow C ^ {J} }
  • constant functor:  \Delta(F) : 1 \rightarrow \mathcal{ C ^ {J} }

を使って次のように定義できる:

  •  \mathcal{Cone}(F) = (\Delta \downarrow \Delta(F))

参考文献