2015-08-01から1ヶ月間の記事一覧
(の定義が抜けていたので・・・) Preservation of ends -functor: および -end: について が -end となること。 記法 命題: Internal hom functors preserve ends (と呼ぶのが良さそう) 証明 記法 参考文献 Basic Concepts of Enriched Category Theory
1-naturality of Yoneda bijections についての 1-naturality*1: 特に のときは 系 つまり で、かつ iso ならば iso 参考文献 Basic Concepts of Enriched Category Theory *1:comma category 間の 1-functoriality でもある
End 特に、 のとき、 preserves ends より記号に矛盾は無い。 Coend 命題: (Co)ends via weighted (co)limits existence-compatible 証明 命題: (Co)powers preserve (co)ends ただし、preservation of ends は (Co)ends via weighted (co)limits を通して P…
Constant enriched functor Unit category からの constant functor を と定義できる。 命題 Unlambda は iso。 証明 Power 上記の命題により、constant -functor の weighted limit と existence-compatible: 特に のとき、flip iso により記号に矛盾はない…
Free enriched category 1-category について -category: を Unit-copower monoidal functor - PS を使って次のように定義できる。 これは monoidal functoriality により確かに -category になる。 Enriching 2-functor 上記と同様にして Unit-copower mono…
(・・・とでも呼んでみる) 以下、curry(close) bijection の箱の添字は省略する。 Copowers in 1-categories natural in Copower bijections 上記の natural isomorphism は copower injection: による bijection: により表すことができるのであった。 命題: Cl…
以下、Lambda 記法 - PS を使う。 Right Kan extension -functor: について、要件: 任意の -functor: について を満たす -functor: -natural transformation: のペアのことを right kan extension of along といい、特に を(一つ選んで) *1 と書く。また、 …