PS

Enriched hom functor

(あるいは hom enriched functor かも)

Enriched difunctor

  •  T: \mathcal{A} ^ {\operatorname{op}} \otimes \mathcal{A} \to \mathcal{B}

なる形の  \mathcal{V}-bifunctor のこと(を個人的に)。

Enriched hom difunctor

  • closed symmetric monoidal category:  \mathcal{V} = (\mathcal{V} _ 0, \otimes, I)
  •  \mathcal{V}-category:  \mathcal{A}

について、hom  \mathcal{V}-difunctor:

を次のように定義できる:

f:id:mbps:20150404185542p:plain

Underlying 1-difunctor of enriched hom functors

 \operatorname{Hom} _ {\mathcal{A}}underlying difunctor:

  •  \operatorname{hom} _ {\mathcal{A}} : \mathcal{A} ^ {\operatorname{op}} _ 0 \times \mathcal{A} _ 0 \to (\mathcal{V}) _ 0 \overset{\square}{\cong} \mathcal{V} _ 0

を次のように定義できる:

f:id:mbps:20150404194739p:plain

命題

f:id:mbps:20150325213421p:plain

とすると

  •  \operatorname{Hom} _ { \mathcal{A} _ 0 } = V \circ \operatorname{hom} _ {\mathcal{A}} : \mathcal{A} ^ {\operatorname{op}} _ 0 \times \mathcal{A} _ 0 \to \mathcal{Set}

参考文献

*1:Self-enriched category - PS

*2:普通の hom functor