PS

Weighted limit

Enriched hom functors preserve weighted limits

命題: Limits in 証明 実装 補題: A reduction of limits in 命題: Hom functors preserve limits (Limits via limits in ) 証明 および、補題により確かに Preservation of weighted limits - PS の形になる。 参考文献 Basic Concepts of Enriched Category…

Limit-cylinder

Weighted limit の limiting-cone 的なもの。 記法.1 @deprecated 以下、Currying の記法 を使って とする。 記法.1' 以下、Lambda 記法 - PS を使って とする。 Cylinder -morphism: のこと。Enriched Yoneda lemma (weak form) - PS の対応により -natural…

Fubini theorem in weighted limits

記法.1 @deprecated と(勝手に)書くことにする。詳しくは Monoidal product of enriched categories - PS Self-enriched monoidal product - PS を使って 記法.2 命題 証明 系 Dual 証明 @deprecated 参考文献 Basic Concepts of Enriched Category Theory (…

Every presheaf is a colimit of representables

以下、Lambda 記法 - PS の記法を使う。 Pointwise weighted limits Pointwise weighted limits - PS より: Pointwise weighted colimits (怪しい)証明 @deprecated @deprecated Contravariant Yoneda embedding @deprecated 命題 証明 具体的には、以下の二…

Weighted colimit

Opposite category の記法 @deprecated とすると は functorial にならないことに注意する。 以下、この記法により variance を明示する。 Weighted limit @deprecated Weighted colimit @deprecated Commutativity Symmetricity of weighted colimits 証明 …

Pointwise weighted limits

Currying の記法 @deprecated -functor: について、curry isomorphism により対応する -functor: を と書くことに(勝手に)する。 Lambda 記法 Lambda 記法 - PS を参照。 命題 -functor: について、weighted limit の族: が存在するならば (右辺は Enriched …

Enriched RAPL

Weighted limits in self-enriched categories Weighted limit による enriched Yoneda lemma - PS の命題より となるのであった。 HPL (という略語は見たことがない) enriched Hom functors Preserve weighted Limits: (Enriched hom functors preserve wei…

Preservation of weighted limits

Preservation of weighted limits -enriched functor: について、-weighted limit of が存在するとき、その counit を とすると が iso になっているとき preserves the limit と言う。 記法 参考文献 Basic Concepts of Enriched Category Theory (3.2)

Weighted limit

Weighted limit -enriched functor: (weight) について、representation of : -natural in を -weighted limit of といい 等々で表す。 Counit 上記の representation は Yoneda bijection により、-morphism: に対応する。さらにこれは end bijection(Enric…